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Abstract. Phase coherent interactions between drift waves and zonal flows are considered. For this purpose,
mode coupling equations are derived by using a two-fluid model and the guiding center drifts. The equations
are then Fourier analyzed to deduce the nonlinear dispersion relations. The latter depict the excitation
of zonal flows due to the ponderomotive forces of drift waves. The flute-like zonal flows with insignificant
density fluctuations have faster growth rates than those which have a finite wavelength along the magnetic
field direction. The relevance of our investigation to drift wave driven zonal flows in computer simulations
and laboratory plasmas is discussed.

PACS. 52.35.Mw Nonlinear phenomena: waves, wave propagation, and other interactions (including
parametric effects, mode coupling, ponderomotive effects, etc.) – 52.35.Kt Drift waves – 52.35.Ra Plasma
turbulence

1 Introduction

Recently, there has been a great deal of interest [1–8] in
studying the excitation of zonal flows and streamers [9,10]
by low-frequency drift waves and kinetic drift-Alfvén
waves in a nonuniform magnetoplasma. Zonal flows and
streamers are associated with zero-frequency convective
cells [11,12]. The latter are either azimuthally symmet-
ric two-dimensional [11], or pseudo-three-dimensional [12]
long wavelength (in comparison with the ion gyrora-
dius ρi) electrostatic perturbations. The two-dimensional
convective cells of Okuda and Dawson [11] have eψ/Te �
nj1/n0, while the pseudo-three-dimensional convective
cells of Hasegawa and Mima [12] have eψ/Te ∼ nj1/n0,
where e is the magnitude of the electron charge, ψ is the
electric potential of the convective cells/zonal flows, Te

is the electron temperature, and nj1 (� n0) is a small
perturbation in the equilibrium density (n0) of the parti-
cle species j (j equals e for the electrons and i for ions).
The parallel (to ẑB0, where ẑ is the unit vector along
the z-axis and B0 is the strength of the external mag-
netic field) wavelength of the pseudo-three-dimensional
convective cells is supposed to be much smaller than the
collisional electron mean free path. The convective cells
are damped due to the ion gyroviscosity. The damping
rates of the two and three-dimensional convective cells are,
respectively,
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where k⊥ is the perpendicular (to ẑ) component of the
wave vector k, νi is the ion-ion collision frequency, ωpi

and ωci are the ion plasma and ion gyrofrequencies, re-
spectively, ρs = cs/ωci is the ion gyroradius at the elec-
tron temperature, and cs is the ion sound speed. Thus, in
a dense plasma (ωpi � ωci) long wavelength (in compari-
son with ρs) convective cells have a very long lifetime, and
they therefore cause cross-field particle transport even in
a thermal equilibrium plasma.

However, the presence of low-frequency (in comparison
with ωci) drift waves can excite zonal flows due to para-
metric interactions [13]. This happens because the drift
wave frequency

ω =
kyU∗

(1 + k2
⊥ρ

2
s)

peaks around kyρs ∼ 1, and there exists a possibility
of producing a zero-frequency ponderomotive force due
to the beating of two drift waves which have identical
frequencies (but different perpendicular wavelengths) in
the short wavelength part of the drift wave spectrum;
here U∗ = csρs/Ln is the electron diamagnetic speed and
Ln = (∂lnn0/∂x)−1 is the scale length of the density gra-
dient which is supposed to be along the x-axis. The pon-
deromotive force, in turn, reinforces the zonal flows. It is
widely believed that nonlinearly excited zonal flows play
a very important role in controlling plasma transports in
turbulent environments.
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In this paper, we re-examine the nonlinear excitation
of zonal flows by coherent drift waves [13] in order to give
some guidance to experimentalists and non-specialists in
plasma physics. By using the two-fluid model and the drift
approximations for the electrons and ions, we derive the
mode coupling equations for drift waves and zonal flows
accounting for the nonlinear interactions between them. A
normal mode analysis is carried out to derive compact dis-
persion relations. The latter show that the ponderomotive
force of coherent drift waves excite efficiently zonal flows
which have insignificant density fluctuations. The results
are in accord with those observed in computer simula-
tions [14] and laboratory experiments [15,16].

2 Governing equations

We consider a nonuniform magnetoplasma containing
large amplitude electrostatic drift waves which are non-
linearly interacting with zonal flows. The perpendicular
components of the electron and ion fluid velocities in the
presence of nonlinearly coupled low-frequency (in compar-
ison with ωci = eB0/mic, where mi is the ion mass and c
is the speed of light in vacuum) and long wavelength (in
comparison with the ion gyroradius ρi = vti/ωci, where vti

is the ion thermal speed) drift waves and zonal flows are,
respectively,

vd
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where φ and ψ are the electrostatic potentials of the drift
waves and zonal flows, respectively, vE = (c/B0)ẑ × ∇φ
is the E × B0 velocity, vDj = (cTj/qjB0n0)ẑ × ∇nj1
is the diamagnetic drift velocity of the particle specie j
(qe = −e and qi = e), Tj is the temperature, vπi =
(ẑ×∇·Πi)/en0B0 is the drift velocity involving the colli-
sionless gyroviscosity tensor [17] Πi, and µi = (3/10)νiρ

2
i

represents the collisional ion gyroviscosity [11]. The su-
perscripts d and z represent quantities associated with
the drift waves and zonal flows, respectively. The angu-
lar brackets denote averaging over one period of the drift
waves.

Substituting (1) into the electron continuity equa-
tion and eliminating the parallel component of the elec-
tron fluid velocity (with νevez � ∂tvez) by means of the
equation

meνev
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we obtain for (v2
te/νe)∂2

z � ω ∼ kyU∗
nd

e1 ≈ n0eφ/Te, (6)

which is the Boltzmann electron density perturbation.
Here me, νe and vte are the electron mass, the elec-
tron collision frequency, and the electron thermal speed,
respectively.

The equation for the drift waves in a dense plasma
(with ωpi � ωci) can be deduced from the ion continuity
equation by inserting ni = n0 +nd

i1 +nz
i1, where ni1 � n0,

and using equations (2, 4, 6) with nd
i1 ≈ nd

e1. The result
for Te � Ti is
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for zonal flows with eψ/Te � nz
i1/n0 and zonal wave-

length much larger than ρs. We have here assumed that
the drift wave frequency is much larger than the damping
rate νiρ
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2
⊥. On the other hand, the drift wave equation in

the presence of the Hasegawa-Mima convective cells/zonal
flows is of the form
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with the Hasegawa-Mima scaling

nz
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, (9)

and ni1 = ne1.
Next, we obtain the equation for azimuthally symmet-

ric zonal flows by inserting (3) and (4) into the modified
charge current density equation. We have(
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when ωpi � ωci. For the Hasegawa-Mima azimuthally
symmetric zonal flows, we insert (4) into the ion conti-
nuity equation and use (9) to obtain
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The last terms in the left-hand side of equations (10, 11)
represent the ponderomotive force of coherent drift waves.
They are associated with the nonlinear ion polarization
drift.

Equations (7, 8, 10, 11) are the desired equations for
studying the excitation of zonal flows by large amplitude
drift waves.
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3 Nonlinear dispersion relations and growth
rates

The nonlinear interactions between a finite amplitude drift
pump wave (ω0,k0) and zonal flows (ω,k) excite upper
and lower drift sidebands (ω±,k±). Thus, we decompose
the drift wave potential as

φ = φ0+ exp(−iω0t+ ik0 · r) + φ0− exp(iω0t− ik0 · r)

+
∑
+,−

φ± exp(−iω±t+ ik± · r), (12)

where ω± = ω ± ω0 and k± = k ± k0 are the frequen-
cies and wave vectors of the sidebands, and the super-
script 0 (±) stands for the pump (sidebands).

Inserting (12) into (7) and (8) and Fourier analyzing
we obtain
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and q2
⊥ = k2

⊥0 − k2
⊥. In deriving equations (13, 14) we

have introduced ψ = ψ̂ exp(−iωt+ ik ·r) and matched the
phasors.

Furthermore inserting (12) into (10) and (11) and
Fourier analyzing, we have, respectively,
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ẑ× k0 · k
1 + k2

⊥ρ
2
s

ρ2
s

×
(
K2
−φ0+φ− −K2

+φ0−φ+

)
, (16)

where K2
± = k2

⊥± − k2
0 and Γz = µik

2
⊥.

Combining equations (13–16) we readily obtain the
nonlinear dispersion relations
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where |φ0|2 = φ0+φ0−. For |ω| � Γz and k⊥0 � k⊥ we
can express (17) and (18) as
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which can depict a purely growing (ω = iγz) instability.
For k0 · k⊥ > 0 the increment for the azimuthally sym-
metric zonal flow excitation is

γz =
√

2
∣∣∣∣cφ0

B0

ẑ× k0 · k
k⊥

∣∣∣∣ |k0 · k⊥|1/2 . (21)

The expression (21) predicts that the growth rate of
the purely growing mode is directly proportional to the
pump wave electric field k0|φ0|. On the other hand, equa-
tion (20) reveals that the growth rate for the Hasegawa-
Mima zonal flows is smaller than that for the azimuthally
symmetric zonal flow excitation. Let us finally estimate
the growth time for a typical laboratory plasma [15,16]
with B0 ∼ 3 kG, Te ∼ 50−100 eV, ρs = 0.5−1 cm, and
φ0 ∼ 1 V. It turns out that zonal flows with a perpendic-
ular scale size of a cm would have an e-folding time of five
microseconds when the pump wavelength is of the order
of ten cm (corresponding to k⊥0ρs ∼ 0.5). Thus, zonal
flows can be parametrically excited on account of the free
energy stored in the drift pump wave.

4 Nonlinear zonal flows

Parametrically excited zonal flows attain large amplitudes
and then interact among themselves. That self-interaction
between finite amplitude potential perturbations of zonal
flows is the dominant nonlinearity, and it appears in the
nonlinear ion polarization drift. The self-organization of
fully developed zonal flow turbulence in the absence of the
drift mode driver is then governed by the Navier-Stokes
equation

Dt∇2
⊥ψ = 0 (22)

for the azimuthally symmetric zonal flows, and by the
Hasegawa-Mima equation

Dt(1− ρ2
s∇2
⊥)ψ = 0 (23)

for the zonal flows with ne1 = n0eψ/Te. Here we have used
the notation Dt = ∂t + (c/B0)ẑ × ∇ψ · ∇. Possible sta-
tionary solutions of (22) and (23) may appear in the form
of monopolar vortices as well as counter-rotating vortices.
As an illustration, we note that in the steady state, equa-
tions (22, 23) are satisfied by

∇2
⊥ψ = G(ψ), (24)
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where G(ψ) is an arbitrary function. Choosing

G(ψ) = −U0 sinh
(
ψ

ψc

)
, (25)

where U0 and ψc are arbitrary constants, one finds that
the solution of the sinh-Poisson equation (24) is of the
form [18,19]

ψ = −4ψc arctanh
[
εcos(y)

cosh(εx)

]
, (26)

which represents a street of counter-rotating Mallier-
Maslowe vortices [18], where ε (< 1) is a constant. Fur-
thermore, choosing

G(ψ) =
4αK2

γ2
exp

(
− 2
α
ψ

)
, (27)

where α,K and γ are constants, one finds that the solution
of the Liouville equation (24) is of the form [19]

ψ = αln

[
2cosh(Kx) + 2

(
1− 1

γ2

)1/2

cos(Ky)

]
, (28)

which is an even (in the x-direction) row of identical vor-
tices for γ2 > 1.

On the other hand, it should be stressed that the inter-
action between nonlinear zonal flows and the drift pump
wave may significantly influence the pump wave as well. In
such a situation, one can either use a model similar to that
in reference [20] or carry out a numerical analysis of the
relevant governing equations to investigate the interplay
between drift waves and nonlinear zonal flows.

5 Summary

In summary, we have shown that finite amplitude drift
waves can parametrically excite zonal flows in a nonuni-
form magnetoplasma. It has been found that azimuthally
symmetric zonal flows with insignificant density fluctua-
tions are driven faster than those zonal flows which have
ne1 ∼ n0eψ/Te. For typical laboratory parameters [15,16],
the growth time is of the order of five microseconds. Finite
amplitude zonal flows undergo further nonlinear evolution
leading to the formation of coherent vortex structures
that are governed by the Navier-Stokes and the Hasegawa-
Mima equations. Such coherent structures constitute a
dynamical paradigm for intermittency in a nonuniform
magnetoplasma containing nonlinearly coupled drift wave-
zonal flow turbulence. Hence, the present investigation

provides a better understanding of drift wave induced
sheared (zonal) flows which are observed in computer sim-
ulations [14] as well as in laboratory experiments [15,16].
Nonlinear sheared flows, in turn, would have an impact on
the confinement of charged particles and transport barri-
ers in tokamaks [21].

The authors are grateful to Liu Chen, Pat Diamond, Dusan
Jovanovic, and Roald Sagdeev for interesting discussions. This
research was partially supported by the Swedish Research
Council through the contract No. 621-2001-2274.

References

1. M.N. Rosenbluth, F.L. Hinton, Phys. Rev. Lett. 80, 724
(1998); P.H. Diamond et al., ibid. 84, 4842 (2000); P.H.
Diamond, M. Malkov, Phys. Scripta T 98, 63 (2002)

2. P. Beyer et al., Phys. Rev. Lett. 85, 4892 (2000)
3. M.A. Malkov, P.H. Diamond, M.N. Rosenbluth, Phys.

Plasmas 8, 5073 (2001)
4. G. Manfredi, C.M. Roach, R.O. Dendy, Plasma Phys. Con-

trol. Fusion 43, 825 (2001); ibid. 43, 1001 (2001)
5. C.N. Lashmore-Davies, D.R. McCarthy, A. Thyagaraja,

Phys. Plasmas 8, 5113 (2001)
6. D. Jovanovic, P.K. Shukla, Phys. Lett. A 289, 219 (2001)
7. P.N. Guzdar, R.G. Kleva, Phys. Plasmas 8, 459 (2001)
8. P.N. Guzdar, R.G. Kleva, A. Das, P.K. Kaw, Phys. Plas-

mas 8, 3907 (2001); Phys. Rev. Lett. 87, 015001 (2001);
L. Chen, Z. Lin, R.B. White, Nucl. Fusion 41, 747 (2001)

9. A. Hasegawa, Adv. Phys. 1, 234 (1985); F.H. Busse, Chaos
4, 123 (1994); T. Soomere, Phys. Rev. Lett. 75, 2440
(1995)

10. S. Champeaux, P.H. Diamond, Phys. Lett. 288, 214 (2001)
11. H. Okuda, J.M. Dawson, Phys. Fluids 16, 480 (1973)
12. A. Hasegawa, K. Mima, Phys. Rev. Lett. 39, 205 (1977)
13. P.K. Shukla et al., Phys. Rev. A 23, 321 (1981); K. Mima,

Y.C. Lee, Phys. Fluids 23, 105 (1980)
14. J. Lin et al., Science 281, 1835 (1998); T.S. Hahm et al.,

Phys. Plasmas 6, 922 (1999)
15. C. Coda, M. Porkolab, K.H. Burrel, Phys. Rev. Lett. 86,

4835 (2001)
16. R.A. Moyer et al., Phys. Rev. Lett. 87, 135001 (2001);

G.R. Tynan et al., Phys. Rev. Lett. 8, 2691 (2001)
17. J. Weiland, Collective Modes in Inhomogeneous Plasma

(Institute of Physics Publ., Bristol, 2000), pp. 20, 21
18. R. Mallier, S.A. Maslowe, Phys. Fluids A 5, 1074 (1993)
19. J. Vranjes̃, Phys. Rev. E 58, 931 (1998); Phys. Scripta 59,

230 (1999)
20. K.B. Hermiz, P.N. Guzdar, J.M. Finn, Phys. Rev. E 51,

325 (1995)
21. K. Itoh, S.-I. Itoh, A. Fukuyama, Transport and Structural

Formation in Plasmas (Institute of Physics Publ., Bristol,
1999)


